Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The application of machine learning (ML) techniques in materials science has revolutionized the pace and scope of materials research and design. In the case of metal–organic frameworks (MOFs), a promising class of materials due to their tunable properties and versatile applications in gas adsorption and separation, ML has helped survey the vast material space. This study explores the integration of reinforcement learning (RL), specifically Q‐learning, within an active learning (AL) context, combined with Gaussian processes (GPs) for predictive modeling of adsorption in MOFs. We demonstrate the effectiveness of the RL‐driven framework in guiding the selection of training data points and optimizing predictive model performance for methane and carbon dioxide adsorption, using two different reward metrics. Our results highlight the integration of RL as an AL method for adsorption predictions in MFs, and how it compares to a previously implemented AL scheme.more » « less
-
In recent decades, metal–organic frameworks (MOFs) have gained recognition for their potential in multicomponent gas separations. Though molecular simulations have revealed structure–property relationships of MOF–adsorbate systems, they can be computationally expensive and there is a need for surrogate models that can predict the adsorption data faster. In this work, an active learning (AL) protocol is introduced that can predict multicomponent gas adsorption in a MOF for a range of thermodynamic conditions. This methodology is applied to build a model for the adsorption of three different gas mixtures (CO2–CH4, Xe–Kr, and H2S–CO2) in the MOF Cu-BTC. A Gaussian process regression (GPR) model is used to fit the data as well to leverage its predicted uncertainty to drive the learning. The training data is generated using grand-canonical Monte Carlo (GCMC) simulations as points are iteratively added to the model to minimize the predicted uncertainty. Also, a criteria which captures the perceived performance of the GPs is introduced to terminate the AL process when the perceived accuracy threshold is met. The three systems are tested for a pressure–mole fraction (P–X), and a pressure–mole fraction–temperature (P–X–T) feature space. It is demonstrated that AL one only needs a fraction of the data from simulations to build a reliable surrogate model for predicting mixture adsorption. Further, the final GP fit from AL outperforms ideal adsorbed solution theory predictions.more » « less
-
High-throughput molecular simulations and machine learning (ML) have been implemented to adequately screen a large number of metal−organic frameworks (MOFs) for applications involving adsorption. Grand canonical Monte Carlo (GCMC) simulations have proven effective in calculating the adsorption capacity at given pressures and temperatures, but they can require expensive computational resources. While they can be resource-efficient, ML models can require large datasets, creating a need for algorithms that can efficiently characterize adsorption; active learning (AL) can play a very important role in this regard. In this work, we make use of Gaussian process regression (GPR) to model pure component adsorption of nitrogen at 77 K from 10−5 to 1 bar, methane at 298 K from 10 −5 to 100 bar, carbon dioxide at 298 K from 10−5 to 100 bar, and hydrogen at 77 K from 10−5 to 100 bar on PCN-61, MgMOF-74, DUT-32, DUT-49, MOF-177, NU-800, UiO-66, ZIF-8, IRMOF-1, IRMOF-10, and IRMOF-16. The GPR model requires an initial training of the model with an initial dataset, the prior one, and, in this study of evaluating AL, we make use of three different prior selection schemes. Each prior scheme is updated with a sampling point resulting from the GP model uncertainties. This protocol continues until a maximum GPR relative error of 2% is attained. We make a recommendation on the best prior selection scheme for the total 44 adsorbate−adsorbent pairs primarily making use of the mean absolute error and the total amount of points required for convergence of the model. To further evaluate the AL framework, we apply the BET consistency criteria on the simulated and GP nitrogen isotherms and compare the resulting surface areas.more » « less
An official website of the United States government
